Publish Date:
A depot uses $n$ drones to disperse packages containing essential supplies along a long straight road.
Initially all drones are stationary, loaded with a supply package.
Every second, the depot selects a drone at random and sends it this instruction:
The road is wide enough that drones can overtake one another without risk of collision.
Eventually, there will only be one drone left at the depot waiting to receive its first instruction. As soon as that drone has flown one centimetre along the road, all drones drop their packages and return to the depot.
Let $E(n)$ be the expected distance in centimetres from the depot that the supply packages land.
For example, $E(2) = \frac{7}{2}$, $E(5) = \frac{12019}{720}$, and $E(100) \approx 1427.193470$.
Find $E(10^8)$. Give your answer rounded to the nearest integer.
Press F12 and use the "Console" tab to view the output of your codes.