Publish Date:
Consider the values of $\log_2(8)$, $\text{log}_4(64)$ and $\text{log}_3(27)$. All three are equal to $3$.
Generally, the function $f(m,n)=\text{log}_m(n)$ over integers $m,n \ge 2$ has the property that
$f(m_1,n_1)=f(m_2,n_2)$ if
We call a function $g(m,n)$ over integers $m,n \ge 2$ proto-logarithmic if
Let $D(N)$ be the number of distinct values that any proto-logarithmic function $g(m,n)$ attains over $2\le m, n\le N$.
For example, $D(5)=13$, $D(10)=69$, $D(100)=9607$ and $D(10000)=99959605$.
Find $D(10^{18})$, and give the last 9 digits as answer.
Note: According to the four exponentials conjecture the function $\text{log}_m(n)$ is proto-logarithmic.
While this conjecture is yet unproven in general, $\text{log}_m(n)$ can be used to calculate $D(N)$ for small values of $N$.
Press F12 and use the "Console" tab to view the output of your codes.