Publish Date:
If a population starts with a single bacterium of type $\alpha$, then it can be shown that there is a 0.07243802 probability that the population will eventually die out, and a 0.92756198 probability that the population will last forever. These probabilities are given rounded to 8 decimal places.
Now consider another species of bacteria, $S_{k,m}$ (where $k$ and $m$ are positive integers), which occurs in $k$ different types $\alpha_i$ for $0\le i< k$. The rules governing this species' lifecycle involve the sequence $r_n$ defined by:
Every minute, for each $i$, each bacterium $A$ of type $\alpha_i$ will independently choose an integer $j$ uniformly at random in the range $0\le j<m$. What it then does depends on $q = r_{im+j} \bmod 5$:
In fact, our original species was none other than $S_{2,2}$, with $\alpha=\alpha_0$ and $\beta=\alpha_1$.
Let $P_{k,m}$ be the probability that a population of species $S_{k,m}$, starting with a single bacterium of type $\alpha_0$, will eventually die out. So $P_{2,2} = 0.07243802$. You are also given that $P_{4,3} = 0.18554021$ and $P_{10,5} = 0.53466253$, all rounded to 8 decimal places.
Find $P_{500,10}$, and give your answer rounded to 8 decimal places.
Press F12 and use the "Console" tab to view the output of your codes.