This question doesn't support checking answers.
305. Reflexive Position

Publish Date:

Let's call S the (infinite) string that is made by concatenating the consecutive positive integers (starting from 1) written down in base 10.
Thus, S = 1234567891011121314151617181920212223242...

It's easy to see that any number will show up an infinite number of times in S.

Let's call f(n) the starting position of the nth occurrence of n in S.
For example, f(1)=1, f(5)=81, f(12)=271 and f(7780)=111111365.

Find  f(3k) for 1≤k≤13.

Press F12 and use the "Console" tab to view the output of your codes.

Loading...